p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.250C23, C4⋊C4.72D4, C8⋊1C8⋊24C2, (C2×D4).64D4, C8⋊6D4.8C2, (C2×C8).188D4, D4⋊Q8.8C2, C4⋊Q8.71C22, C4.105(C4○D8), C4.10D8⋊16C2, C2.14(C8⋊D4), C4⋊C8.190C22, C4.45(C8⋊C22), (C4×C8).216C22, C4.SD16⋊19C2, (C4×D4).50C22, D4.D4.11C2, C4.76(C8.C22), C2.13(D4.2D4), C2.16(D4.5D4), C22.211(C4⋊D4), (C2×C4).35(C4○D4), (C2×C4).1285(C2×D4), SmallGroup(128,431)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.250C23
G = < a,b,c,d,e | a4=b4=e2=1, c2=a2, d2=ab2, ab=ba, cac-1=a-1, ad=da, ae=ea, cbc-1=ebe=b-1, bd=db, dcd-1=a-1c, ece=bc, ede=a2d >
Subgroups: 184 in 80 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), SD16, C22×C4, C2×D4, C2×Q8, C4×C8, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C2.D8, C4×D4, C4⋊Q8, C2×M4(2), C2×SD16, C4.10D8, C8⋊1C8, C8⋊6D4, D4.D4, D4⋊Q8, C4.SD16, C42.250C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C4⋊D4, C4○D8, C8⋊C22, C8.C22, D4.2D4, C8⋊D4, D4.5D4, C42.250C23
Character table of C42.250C23
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 8 | 2 | 2 | 2 | 2 | 4 | 8 | 16 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 0 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | 2 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | complex lifted from C4○D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | √-2 | -√2 | -√-2 | 0 | 0 | √2 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | -√-2 | -√2 | √-2 | 0 | 0 | √2 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | -√-2 | √2 | √-2 | 0 | 0 | -√2 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | -2 | 2 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | √-2 | √2 | -√-2 | 0 | 0 | -√2 | complex lifted from C4○D8 |
ρ19 | 4 | -4 | 4 | -4 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | -4 | 4 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ21 | 4 | -4 | 4 | -4 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
ρ22 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
ρ23 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4.5D4, Schur index 2 |
(1 46 5 42)(2 47 6 43)(3 48 7 44)(4 41 8 45)(9 25 13 29)(10 26 14 30)(11 27 15 31)(12 28 16 32)(17 64 21 60)(18 57 22 61)(19 58 23 62)(20 59 24 63)(33 54 37 50)(34 55 38 51)(35 56 39 52)(36 49 40 53)
(1 50 44 39)(2 51 45 40)(3 52 46 33)(4 53 47 34)(5 54 48 35)(6 55 41 36)(7 56 42 37)(8 49 43 38)(9 24 31 61)(10 17 32 62)(11 18 25 63)(12 19 26 64)(13 20 27 57)(14 21 28 58)(15 22 29 59)(16 23 30 60)
(1 59 5 63)(2 17 6 21)(3 57 7 61)(4 23 8 19)(9 33 13 37)(10 55 14 51)(11 39 15 35)(12 53 16 49)(18 44 22 48)(20 42 24 46)(25 50 29 54)(26 34 30 38)(27 56 31 52)(28 40 32 36)(41 58 45 62)(43 64 47 60)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 6)(4 8)(9 24)(10 21)(11 18)(12 23)(13 20)(14 17)(15 22)(16 19)(25 63)(26 60)(27 57)(28 62)(29 59)(30 64)(31 61)(32 58)(33 52)(34 49)(35 54)(36 51)(37 56)(38 53)(39 50)(40 55)(41 45)(43 47)
G:=sub<Sym(64)| (1,46,5,42)(2,47,6,43)(3,48,7,44)(4,41,8,45)(9,25,13,29)(10,26,14,30)(11,27,15,31)(12,28,16,32)(17,64,21,60)(18,57,22,61)(19,58,23,62)(20,59,24,63)(33,54,37,50)(34,55,38,51)(35,56,39,52)(36,49,40,53), (1,50,44,39)(2,51,45,40)(3,52,46,33)(4,53,47,34)(5,54,48,35)(6,55,41,36)(7,56,42,37)(8,49,43,38)(9,24,31,61)(10,17,32,62)(11,18,25,63)(12,19,26,64)(13,20,27,57)(14,21,28,58)(15,22,29,59)(16,23,30,60), (1,59,5,63)(2,17,6,21)(3,57,7,61)(4,23,8,19)(9,33,13,37)(10,55,14,51)(11,39,15,35)(12,53,16,49)(18,44,22,48)(20,42,24,46)(25,50,29,54)(26,34,30,38)(27,56,31,52)(28,40,32,36)(41,58,45,62)(43,64,47,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,6)(4,8)(9,24)(10,21)(11,18)(12,23)(13,20)(14,17)(15,22)(16,19)(25,63)(26,60)(27,57)(28,62)(29,59)(30,64)(31,61)(32,58)(33,52)(34,49)(35,54)(36,51)(37,56)(38,53)(39,50)(40,55)(41,45)(43,47)>;
G:=Group( (1,46,5,42)(2,47,6,43)(3,48,7,44)(4,41,8,45)(9,25,13,29)(10,26,14,30)(11,27,15,31)(12,28,16,32)(17,64,21,60)(18,57,22,61)(19,58,23,62)(20,59,24,63)(33,54,37,50)(34,55,38,51)(35,56,39,52)(36,49,40,53), (1,50,44,39)(2,51,45,40)(3,52,46,33)(4,53,47,34)(5,54,48,35)(6,55,41,36)(7,56,42,37)(8,49,43,38)(9,24,31,61)(10,17,32,62)(11,18,25,63)(12,19,26,64)(13,20,27,57)(14,21,28,58)(15,22,29,59)(16,23,30,60), (1,59,5,63)(2,17,6,21)(3,57,7,61)(4,23,8,19)(9,33,13,37)(10,55,14,51)(11,39,15,35)(12,53,16,49)(18,44,22,48)(20,42,24,46)(25,50,29,54)(26,34,30,38)(27,56,31,52)(28,40,32,36)(41,58,45,62)(43,64,47,60), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,6)(4,8)(9,24)(10,21)(11,18)(12,23)(13,20)(14,17)(15,22)(16,19)(25,63)(26,60)(27,57)(28,62)(29,59)(30,64)(31,61)(32,58)(33,52)(34,49)(35,54)(36,51)(37,56)(38,53)(39,50)(40,55)(41,45)(43,47) );
G=PermutationGroup([[(1,46,5,42),(2,47,6,43),(3,48,7,44),(4,41,8,45),(9,25,13,29),(10,26,14,30),(11,27,15,31),(12,28,16,32),(17,64,21,60),(18,57,22,61),(19,58,23,62),(20,59,24,63),(33,54,37,50),(34,55,38,51),(35,56,39,52),(36,49,40,53)], [(1,50,44,39),(2,51,45,40),(3,52,46,33),(4,53,47,34),(5,54,48,35),(6,55,41,36),(7,56,42,37),(8,49,43,38),(9,24,31,61),(10,17,32,62),(11,18,25,63),(12,19,26,64),(13,20,27,57),(14,21,28,58),(15,22,29,59),(16,23,30,60)], [(1,59,5,63),(2,17,6,21),(3,57,7,61),(4,23,8,19),(9,33,13,37),(10,55,14,51),(11,39,15,35),(12,53,16,49),(18,44,22,48),(20,42,24,46),(25,50,29,54),(26,34,30,38),(27,56,31,52),(28,40,32,36),(41,58,45,62),(43,64,47,60)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,6),(4,8),(9,24),(10,21),(11,18),(12,23),(13,20),(14,17),(15,22),(16,19),(25,63),(26,60),(27,57),(28,62),(29,59),(30,64),(31,61),(32,58),(33,52),(34,49),(35,54),(36,51),(37,56),(38,53),(39,50),(40,55),(41,45),(43,47)]])
Matrix representation of C42.250C23 ►in GL8(𝔽17)
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 15 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 13 | 15 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 11 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
3 | 14 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 14 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 13 | 14 | 3 | 0 | 0 | 0 | 0 |
13 | 14 | 3 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 14 | 5 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 3 |
0 | 0 | 0 | 0 | 3 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 5 | 14 | 0 | 0 |
7 | 11 | 15 | 0 | 0 | 0 | 0 | 0 |
11 | 7 | 0 | 15 | 0 | 0 | 0 | 0 |
8 | 9 | 10 | 6 | 0 | 0 | 0 | 0 |
9 | 8 | 6 | 10 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 13 | 15 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 6 | 1 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
G:=sub<GL(8,GF(17))| [16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,15,4,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,15,4],[0,16,6,0,0,0,0,0,1,0,0,11,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16],[3,14,5,13,0,0,0,0,14,14,13,14,0,0,0,0,0,0,14,3,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,0,0,3,5,0,0,0,0,0,0,12,14,0,0,0,0,14,12,0,0,0,0,0,0,5,3,0,0],[7,11,8,9,0,0,0,0,11,7,9,8,0,0,0,0,15,0,10,6,0,0,0,0,0,15,6,10,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,15,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,0,11,0,0,0,0,0,16,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16] >;
C42.250C23 in GAP, Magma, Sage, TeX
C_4^2._{250}C_2^3
% in TeX
G:=Group("C4^2.250C2^3");
// GroupNames label
G:=SmallGroup(128,431);
// by ID
G=gap.SmallGroup(128,431);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,224,141,512,422,387,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=e^2=1,c^2=a^2,d^2=a*b^2,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,a*e=e*a,c*b*c^-1=e*b*e=b^-1,b*d=d*b,d*c*d^-1=a^-1*c,e*c*e=b*c,e*d*e=a^2*d>;
// generators/relations
Export